Synthesis and Characterization of a Novel Aluminophosphate with Layer Structure

WANG TIELI,* YU LONG \dagger, \ddagger, AND PANG WENQIN \dagger
*Institute of Theoretical Chemistry, and \dagger Department of Chemistry, Jilin University, Changchun, People's Republic of China

Communicated by J. M. Honig, September 20, 1990

Abstract

An aluminophosphate with a layer structure has been synthesized hydrothermally. The ratio $\mathrm{P} / \mathrm{Al}=$ 2 for the framework; its structure consists of Al-centered tetrahedra and P-centered tetrahedra as basic building units to form a two-dimensional layer structure. The protonated ethylenediamine molecules are located in the interlayer space and sustain the framework. The water molecules are located in the space between two layers. Layers are joined together by van der Waals force to form a threedimensional structure which crystallizes in the space group $P b n b$, with $a=8.052(6), b=8.760(2), c$ $=17.037(7) \AA$, and $V=1201.88 \AA^{3}$. The crystal structure has been refined to yield values of $R=$ $0.0418, R_{\mathrm{w}}=0.0447$. © 1990 Academic Press, Inc.

Introduction

Since the first series of microporous aluminophosphates, denoted as $\mathrm{AlPO}_{4}-n$, was prepared in 1982 (1), these materials have been extensively studied (2-5). Some of them are isostructural with known zeolites, hut a majority has novel structures (6). We synthesized a novel aluminophosphate, named $\mathrm{AlPO}_{4}-\mathrm{CJ}$, by the hydrothermal method. The framework of the sample has a unique layer structure, for which the ratio $\mathrm{P} / \mathrm{Al}=2$.

Synthesis

The title compound ($\mathrm{AlPO}_{4}-\mathrm{CJ}$) was synthesized by a hydrothermal method. An aqueous mixture of aluminum hydroxide, phosphoric acid, and ethylenediamine with the gel composition $1.0 \mathrm{Al}_{2} \mathrm{O}_{3}: 1.6 \mathrm{P}_{2} \mathrm{O}_{5}: 1.8$

[^0]ethylenediamine: $2.0 \quad \mathrm{NH}_{4} \mathrm{~F}: 60 \quad \mathrm{H}_{2} \mathrm{O}$ was heated at $150^{\circ} \mathrm{C}$ for 12 days under autogenous pressure. The product was filtered, washed with distilled water, and dried in air at about $80^{\circ} \mathrm{C}$. Excellent single crystals suitable for structural analysis by X-ray diffraction could be selected. Comparison with the characteristic X-ray powder diffraction pattern of the AlPO_{4} framework reported so far indicated that the product synthesized has a novel structure.

Determination of the Structure

A colorless crystal was selected. The crystal data: orthorhombic system; space group: Pbnb with $a=8.052(6), b=$ 8.760(2), $c=17.037(7) \AA$, and $V=1201.88$ $\AA^{3} ; Z=8 ; \Gamma(000)-576 ; \mathrm{MU}=4.49 \mathrm{~cm}^{-1}$; $\mu\left(\mathrm{Mo}_{3} K \alpha\right)=67 \mathrm{~cm}^{-1} ; \lambda=0.7107 \AA ;$ graphite monochromator; crystal dimensions 0.1 $\times 0.1 \times 0.5 \mathrm{~mm} ; R=0.0418 ; R_{\mathrm{w}}=0.0487$;

TABLE I
Atom Coordinates ($\times 10^{4}$) and Temperature
Factors ($\AA^{2} \times 10^{3}$)

Atom	X	Y	Z	U
P	$613(0)$	$8622(0)$	$6478(0)$	$15(0)^{*}$
$\mathrm{O}(1)$	$-1257(2)$	$8707(1)$	$6502(1)$	$31(0)^{*}$
$\mathrm{O}(2)$	$1297(2)$	$8492(2)$	$5657(1)$	$33(0)^{*}$
$\mathrm{O}(3)$	$1122(2)$	$7234(2)$	$6978(1)$	$43(0)^{*}$
$\mathrm{O}(4)$	$1327(3)$	$10050(2)$	$6873(1)$	$51(1)^{*}$
$\mathrm{O}_{\mathbf{w}}$	$2500(0)$	$3829(4)$	$2500(0)$	$45(1)^{*}$
Al	$2500(0)$	$11136(1)$	$7500(0)$	$14(0)^{*}$
N	$2145(3)$	$5855(2)$	$4897(1)$	$23(1)^{*}$
C	$516(4)$	$5211(4)$	$4645(2)$	$27(1)^{*}$
H_{1}	$2049(36)$	$6673(31)$	$5200(16)$	
H_{2}	$2656(40)$	$6108(33)$	$4480(22)$	
H_{3}	$2674(44)$	$5259(39)$	$5202(17)$	
H_{4}	$618(35)$	$4189(37)$	$4309(18)$	
H_{5}	$36(42)$	$5967(41)$	$4254(23)$	
H_{6}	$1873(49)$	$3298(43)$	$2847(21)$	

[^1]for 1312 unique observed reflections with l $\geq 3 \sigma\left(I_{0}\right)$ collected at $20^{\circ} \mathrm{C}$ on a Nicolet R3 four-circle diffractometer by using the ω scan technique with variable scan speed from 4.0 to $29.3^{\circ} \mathrm{min}^{-1}$ in the range of $3^{\circ} \leq$ $2 \theta \leq 67^{\circ}$. The structure was solved by direct methods and refined by block-matrix leastsquares. All computations were carried out on an Eclipse S/250 computer using the SHELXTL program. All atoms were located from a difference Fourier map.

TABLE II

Bond LengThs (\AA)			
$\mathrm{P}-\mathrm{O}(1)$	$1.508(2)$	$\mathrm{P}-\mathrm{O}(2)$	$1.510(4)$
$\mathrm{P}-\mathrm{O}(3)$	$1.539(2)$	$\mathrm{P}-\mathrm{O}(4)$	$1.533(2)$
$\mathrm{Al}-\mathrm{O}(3)$	$1.717(2)$	$\mathrm{Al}-\mathrm{O}(4)$	$1.714(3)$
$\mathrm{Al}-\mathrm{O}(3 \mathrm{a})$	$1.717(2)$	$\mathrm{Al}-\mathrm{O}(4 \mathrm{a})$	$1.714(3)$
$\mathrm{Al}-\mathrm{O}(3 \mathrm{~b})$	$1.717(2)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.491(4)$
$\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a})$	$1.513(6)$	$\mathrm{N}(1)-\mathrm{H}(1)$	$0.886(28)$
$\mathrm{N}(1)-\mathrm{H}(2)$	$0.852(36)$	$\mathrm{N}(1)-\mathrm{H}(3)$	$0.851(33)$
$\mathrm{C}(1)-\mathrm{H}(4)$	$1.067(33)$	$\mathrm{C}(1)-\mathrm{H}(5)$	$1.015(38)$
$\mathrm{O}_{\mathrm{w}}-\mathrm{H}(6)$	$0.906(38)$	$\mathrm{O}_{\mathrm{w}}-\mathrm{H}(6 \mathrm{a})$	$0.906(38)$

TABLE III
Bond Angles (Degrees)

$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$113.2(1)$	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	$106.9(1)$
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	$110.9(1)$	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(4)$	$108.8(1)$
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(4)$	$109.4(1)$	$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(4)$	$107.6(1)$
$\mathrm{P}-\mathrm{O}(3)-\mathrm{Al}$		$154.3(2)$	$\mathrm{P}-\mathrm{O}(4)-\mathrm{Al}$
$\mathrm{O}(4)-\mathrm{Al}-\mathrm{O}(3 \mathrm{a})$	$110.1(1)$	$\mathrm{O}(4)-\mathrm{Al}-\mathrm{O}(3 \mathrm{~b})$	$159.0(2)$
$\mathrm{O}(3 \mathrm{a})-\mathrm{Al}-\mathrm{O}(3 \mathrm{~b})$	$111.9(2)$	$\mathrm{O}(4)-\mathrm{Al}-\mathrm{O}(4 \mathrm{a})$	$112.111)$
$\mathrm{O}(3 \mathrm{a})-\mathrm{Al}-\mathrm{O}(4 \mathrm{a})$	$106.1(1)$	$\mathrm{O}(3 \mathrm{~b})-\mathrm{Al}-\mathrm{O}(4 \mathrm{a})$	$110.1(1)$
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a})$	$110.2(3)$	$\mathrm{H}(1)-\mathrm{N}-\mathrm{C}(1)$	$113.41 .9)$
$\mathrm{H}(2)-\mathrm{N}-\mathrm{C}(1)$	$106.4(2.3)$	$\mathrm{H}(3)-\mathrm{N}-\mathrm{C}(1)$	$112.6(2.4)$
$\mathrm{H}(1)-\mathrm{N}-\mathrm{H}(2)$	$108.5(2.8)$	$\mathrm{H}(1)-\mathrm{N}-\mathrm{H}(3)$	$100.7(2.9)$
$\mathrm{H}(2)-\mathrm{N}-\mathrm{H}(3)$	$115.3(3.2)$	$\mathrm{H}(4)-\mathrm{C}(1)-\mathrm{N}$	$113.9(1.6)$
$\mathrm{H}(3)-\mathrm{C}(1)-\mathrm{N}$	$106.1(2.0)$	$\mathrm{H}(4)-\mathrm{C}(1)-\mathrm{H}(5)$	$103.0(2.7)$
$\mathrm{H}(4)-\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a})$	$105.4(1.7)$	$\mathrm{H}(5)-\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a})$	$118.3(2.0)$
$\mathrm{H}(6)-\mathrm{O}_{\mathrm{w}}-\mathrm{H}(6 \mathrm{aa})$	$118.1(4.8)$		

Description of the Structure
 and Discussion

The atomic coordinates and equivalent thermal parameters (Ueq), interatomic distances, and angles are listed in Tables I, II, and III, respectively.

The structural analysis indicates that the structure consists of Al-centered tetrahedra and P-centered tetrahedra. The composition of the product corresponds to the asymmetric unit content $\mathrm{AlP}_{2} \mathrm{O}_{8} \cdot \mathrm{H}_{3}^{+} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{+} \mathrm{H}_{3}$ - $\mathrm{H}_{2} \mathrm{O}$. The coordination environment of Al and P atoms in the asymmetric unit is shown in Fig. 1. Each Al atom is tetrahedrally coor-

TABLE IV
Anisotropic Temperature Factors ($\AA^{2} \times 10^{3}$)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
P	$16(0)$	$15(0)$	$17(0)$	$-1(0)$	$-4(0)$	$0(0)$
O_{1}	$17(1)$	$47(1)$	$29(1)$	$6(1)$	$-2(1)$	$4(1)$
O_{2}	$43(1)$	$29(1)$	$26(1)$	$-3(1)$	$14(1)$	$-1(0)$
O_{3}	$38(1)$	$37(1)$	$52(1)$	$22(1)$	$-11(1)$	$8(1)$
O_{4}	$64(2)$	$36(1)$	$53(1)$	$-20(1)$	$-17(1)$	$-14(1)$
O_{w}	$41(2)$	$48(2)$	$46(2)$	$0(0)$	$11(2)$	$0(0)$
Al	$18(0)$	$11(0)$	$14(0)$	$0(0)$	$0(0)$	$0(0)$
N	$22(1)$	$24(1)$	$23(1)$	$0(0)$	$3(1)$	$-1(1)$
C	$23(1)$	$36(1)$	$21(1)$	$0(0)$	$2(1)$	$-8(1)$
H_{1}	$23(8)$					
H_{2}	$31(9)$					
H_{3}	$40(9)$					
H_{4}	$29(8)$					
H_{5}	$49(10)$					
H_{6}	$99(18)$					

Fig. 1. Asymmetric unit of AlPO_{4}-CJ.
dinated and shares an oxygen atom with an adjacent phosphorus atom. Each P atom is also tetrahedrally coordinated, but it has two terminal oxygens. Two of the four types of oxygen atoms are bonded to one P atom. O_{w} represents the position of a water molccule.
The structure of $\mathrm{AlPO}_{4}-\mathrm{CJ}$ consists of infinite two-dimensional layers. In the structure, AlO_{4} and PO_{4} tetrahedra form fourmembered rings, which then form infinite one-dimensional chains by sharing Al atoms. The nonbonded distance $\mathrm{H}_{1}-\mathrm{O}_{2}$ is

TABLE V
Nonbonded Distance (\AA)

$\mathrm{H}(1)-\mathrm{O}(2)$	1.873
$\mathrm{H}(3)-\mathrm{O}(2)$	1.918
$\mathrm{H}(2)-\mathrm{O}(1)$	1.896

$1.873 \AA, \mathrm{H}_{3}-\mathrm{O}_{2}$ is $1.918 \AA$ and $\mathrm{H}_{2}-\mathrm{O}_{1}$ is $1.896 \AA$ as obtained from Table V. Thus, the hydrogen atoms of the protonated ethylenediamine molecules form hydrogen bonds, with a terminal oxygen belonging to the P atoms. Via these hydrogen bonds, protonated ethylenediamine molecules, connect adjacent chains composed of AlO_{4} and PO_{4} tetrahedra. This results in two-dimensional layers. Infinite layers are joined together by van der Waals forces to form the three-dimensional structure. The stereoview of the AlPO_{4}-CJ framework along the a-axis is shown in Fig. 2. The water molecules are located in the space between one layer and another. We omit the water molecules in Fig. 2 for clarity.

In the synthesis of the product, the ethylenediamine molecules were used as the tem-

Fig. 2. Stereoview of the framework of $\mathrm{AlPO}_{4}-\mathrm{CJ}$ along the a-axis, showing connections between alternating Al and \mathbf{P} atoms, which are represented by circles. There are ethylenediamine molecules protonated between two chains.
plating agent; the X-ray diffraction shows that protonated ethylenediamine molecules are located in the interlayer space and sustain the framework.
In summary, we have synthesized a novel aluminophosphate crystal with a layer structure. One of the unique structural features is that the molar ratio of P / Al of the framework has the value 2 . Another feature is that the phosphorus atom has two terminal oxygens. Protonated ethylenediamine molecules sustain the two-dimensional structure by hydrogen bonding, and the three-dimensional framework is formed by infinite layers connected by van der Waals forces.

References

1. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, J. Amer. Chem. Soc. 104, 1146 (1982).
2. J. M. Bennett, W. J. Dytrych, J. J. Pluth, J. W. Richardson, Jr. and J. V. Smith, Zeolites 6, 349 (1986).
3. E. M. Flanigen, B. M. Lok, R. L. Patton, and S. T. Wilson, "Proceedings of the 7th International Zeolite Conference," p. 103, Kadasha, Elsevier (1986).
4. J. V. Smith, Chem. Rev. 88, 149 (1988).
5. J. B. Parise, and C. S. Day, Acta Crystallogr. Sect. C 41, 515 (1985).
6. M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, and C. Crowder, Nature (London) 331, 698 (1988).

[^0]: \ddagger To whom correspondence should be addressed

[^1]: * Equivalent isotropic U defined as one third of the trace of the orthogonalized U tensor.

